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Quantum Chaos 
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A quantum system which is allowed to interact with its boundary in a self- 
consistent way is shown to exhibit chaos. We conjecture that in general genuine 
wave chaos (decaying autocorrelation functions, exponential sensitivity of 
wavefunctions to initial wavefunction configurations) can be obtained whenever 
a wavefield is allowed to modify its confining boundaries in a self-consistent 
way. We suggest to test this conjecture in the acoustic regime. 
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A new chapter in the quest for quantum chaos began when Casati et al. ~1~ 

reported their results on the quantum dynamics of the kicked rotor. Classi- 
cally this system is strongly chaotic, (z) which leads to an unlimited diffusive 
increase of rotational energy. Therefore, quantum mechanics--intuitively 
perceived as being more unpredictable than classical mechanics--was 
expected to show an even stronger stochastic behavior. But instead of 
chaos and unlimited chaotic diffusion, it was found that the diffusive energy 
gain of the quantum kicked rotor stopped at some critical interaction time 
t*. From then on, i.e., for times t larger than t*, the quantum dynamics 
was marked by pronounced recurrences (collapses and revivals) which 
occurred on a time scale much shorter than the classical Poincar8 
recurrence times. Later, the quantum freeze of classical diffusion was inter- 
preted as a manifestation of Anderson localization by Fishman e ta / .  (3) This 
"negative" result notwithstanding, many investigators continued the search 
for quantum instabilities and quantum chaos. Despite a concentrated 
effort, none of the indicators of classical chaos, such as exponential sen- 
sitivity of wavefunctions to initial conditions or decaying autocorrelation 
functions, have been detected in any of the quantum systems investigated 
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so far. This "failure" is usually attributed to the linearity of quantum 
mechanics (superposition principle). 

While it is relatively easy to see why bounded time-independent 
quantum systems with rigid boundaries cannot be chaotic (they are 
characterized by a discrete spectrum and normalizable wavefunctions), it 
is harder to establish a similar result for the case of periodically or quasi- 
periodically driven quantum systems. Although a complicated quantum 
time evolution of expectation values can sometimes be observed, (4) it has to 
be refuted as not chaotic in the long-time limit. (5) On the other hand, 
systems like the kicked rotor (1-3) or quantum billiards (6-8) are characterized 
by a rigid setup. This means that the boundary conditions of the system are 
chosen once and for all and the quantum dynamics is studied subject to 
these f i xed  boundary conditions. 

In this paper we will show that a quantum system interacting self- 
consistently with a mobile boundary exhibits genuine quantum chaos with 
a positive Lyapunov exponent. 

Consider the setup shown in Fig. 1. A quantum particle with mass m 
moves freely between a rigid wall at x = 0 and a mobile wall (a piston) with 
mass M at x = q. Thus, the particle experiences a potential 

v ( x ) = {  O for for x<~Oorx>~qo<x<q (1) 

The mobile wall moves in the potential ("nonlinear spring" in Fig. 1) 

V(q) = Voq(q - Q)2 (2) 

The force acting on the piston wall due to the nonlinear potential V(q) is 
given by 

0V 
F(q) - Vo(q - Q ) ( 3 q -  Q) (3) 0q 
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Fig. 1. Sketch of the quantum piston model. 
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In addition to F, the piston experiences a force due to the pressure of the 
quantum particle on the piston wall. For fixed q the normalized eigenstates 
of the quantum particle are given by 

qo.(x; q) = (2/q) 1/2 sin(nrcx/q), n = 1, 2 .... (4) 

For every piston position q the wavefunction of the quantum particle can 
be expanded according to 

r q) = ~ A.(q)  ~o.(x; q) (5) 
t t = l  

This expansion inserted into the time-dependent Schr6dinger equation 
yields 

i f t .=  ~ D.kA k 
k = l  

1 a 
D.k = ~ e. 6 nk - -  i -~ # i l k  

" 1  

(6) 
h 2 ~  2 

~n ~ - ~ - - m  F/2 

i for n = k  

#nk = 2nk _ l ) n + k _ _  n2_  k 2 for n e k 

Since /~.k is antisymmetric, the coupling matrix D is Hermitian and the 
total quantum probability 

P =  ~ IA.] z (7) 
n = l  

is conserved. The total kinetic energy of the quantum particle is given by 

1 ~ e, IA.[2 
K(q) = ~ .  = 1  (S) 

The kinetic energy acts like an additional potential for the piston. 
Therefore, the force acting on the piston due to the quantum particle is 

G(q)= 2 e. IA,12+Re A*# .kAk  (9) 
n 1 k = l  
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The equations of motion (6) for the quantum amplitudes can now be 
supplemented with the classical equations of motion for the piston wall. 
Introducing the piston momentum p, we have 

(1 = p / M ;  1~ = F(q)  + G(q) (10) 

Besides the quantum probability P, the total energy of the system 

p2 
E=-~--~+ V ( q ) + K ( q )  (11) 

is also a constant of the motion. In order to investigate the properties of 
the flow defined by (6) and (10), it is instructive to split the amplitudes A 
into real and imaginary parts, 

" hq 2 q t, = 1 
(12) 

O ~ 
j~i,_ hq 21 e'A~r' --  q k ~== 1 I~nk" A(i)k 

Because kt.. =0, it is trivial to show that the flow defined by (10), (12) is 
divergence-flee. This suggests that the set of equations (10), (12) can be 
derived from a Hamiltonian. Indeed, defining 

_ .~. ,j~-~ .~ X ~ - , , ~  QA~ , Y~= A n (13) 

the angular momentum 

L = ~ X ,p , ,  k r k  (14) 
nk 

and the canonical momentum 

w = p - L / q  (15) 

we can derive the equations of motion for the piston model from the 
Hamiltonian 

w 2 1 
/ 4 : ~ - - ~ + ~  

according to 

OH 
q =  ~w' 

1 Q2 ) 
+ 

n = 1 2Mq2 (16) 

0H c~H OH 
~ = -  ~-~; 2 . - ~ y ,  r ~  ~x. (17) 
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Introducing dimensionless variables 

e = MQSE/h2; q = q/Q; ~ = wQ/h 
(18) 

x = X/Q; y = Q r/h; z = ht/MQS; l = L/h 

the mass ratio 

p = M~2/2m (19) 

and the dimensionless potential strength 

v o = M V  o QS/h2 (20) 

we have that the Hamiltonian becomes 

0 I +l = 
h=--2 q-~2n~ln2(x2-}- Y2)q"Von(n-1)2 q- n 2q2 (21) 

The equations of motion derive from 

Oh Oh Oh Oh 
2 n - @ ,  P"= - O x ,  0=~-~; ~ O H (22) 

In order to gain more insight into the structure of this problem, we will 
consider two special cases. 

(i) One quantum level only. In this case it is easy to show that the 
equations of motion are completely integrable. 

(ii) Two quantum levels�9 This case leads to quantum chaos in the 
amplitudes xl ,  xs, Yl, and Ys. For this special case, the equations of 
motion are 

n n \  

2 2 = 4 P y 2 + ~ - ( ~ + ~ ) x l  
n t l \  

Pl = - - - x l -  ~+ Y2 
n2 (23) 

3~2-- - 4  x2-t- ~ '1- ~ Yl 

l 
O=~+- q 

• 5 ,2 ~=~3 n2(xS+ yZ) -Vo(q- -1) (3q- -1)  + +-~5 
n=l 
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Fig. 2. 
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Poincar+ section in the (~/, {) plane of the quantum piston model�9 

with /~ ~ ~12 = 4�9 The phase space is six-dimensional�9 But since 
2 2 P = Xl + x] + YI + y2 and e are conserved, the dimensionality is effectively 

reduced to four. Also, for the time being, we are not concerned with a 
global phase, which can be extracted from the set of quantum amplitudes. 
This reduces the dimension further to effectively three�9 A Poincar6 surface 
of section with Y2=0  (see Fig. 2) reveals that there are no additional 
constants of the motion�9 This is an indication for chaos�9 Figure 3 
shows the Euclidean distance d (in six-dimensional phase space) of two 
trajectories started with x] l) = x~ 2) = 1, x~21)= x{22) = 0, y~l)= y~2) = 0, 
y{21) = y(2)  = 0, q(1) = 0.2, q ( 2 )  = q ( 1 )  ..{_ A ,  ~ ( 1 )  ~--- 0.1, a n d  ~ ( 2 )  = [2e - p / ~  (2)2 - 

2Voq(2)(~/(2)-l)2] 1/2. We chose A to be A = 1 0  -8, p =  1, and Vo = 100. 
Figure 3 clearly shows exponential separation, the hallmark of chaos in a 
bounded system�9 The exponential separation breaks only when at z ~ 18 

Fig. 3. 
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Euclidean separation of two initially close trajectories as a function of time�9 
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the size of the system is reached. The Lyapunov exponent which corresponds 
to the slope in Fig. 3 is 2 ~ 0.9. 

The ultimate proof of quantum chaos in this system, however, is 
exponential sensitivity in the quantum amplitudes. To show that this is 
indeed the case, we started two trajectories with x]l~= 1, x~ 1)= 0, y~l)= 0, 
y(2 ~) = 0, x] 2) = 1 - A, x(2 2) = 0, y~2) = 2A - A 2, y(2 2~ = 0, ~(~) = 4 (2) = 0.1, 
r/O)=r/(2~=0.2. Figure 4 shows the Euclidean distance d between the 
trajectories (1) and (2) in the four-dimensional "quantum" subspace 
{Xl, x2, Yl, Y2 }. An exponential growth of d is clearly visible. We restricted 
ourselves to evaluation of d in the four-dimensional quantum subspace to 
emphasize that exponential sensitivity can be defined for the quantum sub- 
system only. The quantum Lyapunov exponent corresponding to Fig. 4 is 
again 2 ~ 0.9. 

Thus we proved that a quantum system interacting self-consistently 
with a "wobbly" boundary condition exhibits chaos in the traditional sense 
of a positive Lyapunov exponent. Similar ideas were recently published in 
the context of nuclear collective motion. (9) 

While it may be hard to set up an actual quantum system which is 
confined by a mobile macroscopic wall (an electron in a liquid helium 
bubble ~t~ may be a possibility), such systems are readily available in the 
acoustic context, where a sound field can act on its confining boundary and 
change it self-consistently. One may think about an actual acoustic experi- 
ment with a setup according to Fig. i, a sound wave replacing the wave 
function of the quantum particle. Another possibility is sketched in Fig. 5. 
A hard sphere interacts with a sound wave in a rigid (stadium-shaped) 
enclosure. The sound wave imparts momentum to the sphere, which will 
start to move. This, on the other hand, will change the boundary condi- 
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Fig. 4. Euclidean separation of initially close quan tum amplitudes. The distance between 
amplitudes increases exponentially and allows one to define a quan tum Lyapunov exponent. 
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) 
Fig. 5. Sketch of a system for the investigation of acoustic or quantum wave chaos. A sphere 
is enclosed in a stadium-shaped container and interacts self-consistently with a sound or 
matter wave trapped in the same container. 

tions for the sound field, which has to adapt to the new position of the 
sphere. Based on our results for the quantum model studied above, we are 
confident of obtaining acoustic wave chaos for the system depicted in 
Fig. 5. Wave chaos, here, is to be understood in analogy to classical chaos. 
The time evolution of the wavefunction for the setup in Fig. 5 is expected 
to show exponential sensitivity to small changes in its initial configuration 
as well as a vanishing autocorretation function (~*(z)  ~(~ + 6z))  averaged 
on ~ for 6z ~ ~ (and generic initial conditions). Of course one may also 
solve the Schr6dinger equation with Dirichlet boundary conditions for the 
system shown in Fig. 5. If the initial configuration of the matter wave is 
chosen such as to exert a net pressure on the sphere, the sphere would start 
moving and impart its resulting chaotic motion via the boundary condi- 
tions on the field distribution of the matter wave. Genuine quantum chaos 
in the usual sense of exponential sensitivity would result. 

In conclusion, we mention that the piston model discussed above 
can also be interpreted as a classical one-dimensional oscillator coupled to 
a quantum degree of freedom. Since a one-dimensional oscillator is 
integrable, the results obtained in this paper show that despite the fact that 
quantum mechanics usually suppresses classical chaos (1'3' 11,12) here it is 
the catalyst which enables chaos to occur. 
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